
1

Regular Expressions

Department of Computer & Information Sciences
Pakistan Institute of Engineering and Applied Sciences

Umar Faiz
http://www.pieas.edu.pk/umarfaiz/cis317

Regular Expressions

Regular expressions describe regular languages

Example:
*)(cba +

Costas Busch - RPI 2

describes the language

*)(cba ⋅+

{ } { },...,,,,,*, bcaabcaabcabca λ=

Regular Expressions
The regular expressions over finite Σ are the strings
over the alphabet Σ such that:

1. { } (empty set) is a regular expression for the
empty set

{ }2. ε is a regular expression denoting { ε }
3. a is a regular expression denoting set { a } for

any a in Σ

Recursive Definition

αλ,,∅Primitive regular expressions:

2r1rGiven regular expressions and

Costas Busch - RPI 4

()1

1

21

21

*
r

r
rr
rr

⋅
+

are regular expressions

Examples

())(* ∅+⋅⋅+ ccbaA regular expression:

Costas Busch - RPI 5

()++ baNot a regular expression:

Languages of Regular Expressions

: language of regular expression

E l

()rL r

Costas Busch - RPI 6

Example:

() { },...,,,,,*)(bcaabcaabcacbaL λ=⋅+

2

Definition

For primitive regular expressions:

()L ∅=∅

Costas Busch - RPI 7

() { }
() { }aaL

L
=
= λλ

For regular expressions and

Definition (continued)

1r 2r

() () ()2121 rLrLrrL ∪=+

Costas Busch - RPI 8

() () ()2121 rLrLrrL =⋅

() ()()** 11 rLrL =

()() ()11 rLrL =

Example

Regular expression: () *aba ⋅+

()()*abaL ⋅+ ()() ()*aLbaL +=
() ()*aLbaL +=

Costas Busch - RPI 9

() ()aLbaL +
() ()() ()()*aLbLaL ∪=

{ } { }() { }()*aba ∪=
{ }{ },...,,,, aaaaaaba λ=

{ },...,,,...,,, baababaaaaaa=

Example

Regular expression () ()bbabar ++= *

Costas Busch - RPI 10

() { },...,,,,, bbbbaabbaabbarL =

Example

Regular expression () () bbbaar **=

Costas Busch - RPI 11

() }0,:{ 22 ≥= mnbbarL mn

Example

Regular expression *)10(00*)10(++=r

Costas Busch - RPI 12

)(rL = { all strings with at least
two consecutive 0 }

3

Example

Regular expression)0(*)011(λ++=r

Costas Busch - RPI 13

)(rL = { all strings without
two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions and1r 2r

Costas Busch - RPI 14

are equivalent if)()(21 rLrL =

Example

L = { all strings without two consecutive 0 }

)0(*)011(1 λ++=r

Costas Busch - RPI 15

)0(*1)0(**)011*1(2 λλ +++=r

LrLrL ==)()(21
1r 2rand

are equivalent
regular expr.

Algebraic Laws for REs
Just like we have an algebra for arithmetic, we also
have an algebra for regular expressions.
• Commutative Law for Union

– L + M = M + L

• Associative Law for UnionAssociative Law for Union
– (L + M) + N = L + (M + N)

• Associative Law for Concatenation
– (LM)N = L (MN)

• There is no commutative law for concatenation
– LM ≠ ML

16

Algebraic Laws for REs

• The identity for union is:
– L + φ = φ + L = L

• The identity for concatenation is:
– L ε = ε + LL ε ε + L

• The annihilator for concatenation is:
– φ L = Lφ = L

17

Algebraic Laws for REs

• Left Distributive law:
– L(M + N) = LM + LN

• Right Distributive law:
– (M + N)L = LM + LN(M + N)L LM + LN

• Idempotent law:
– L + L = L

18

4

Laws involving Closures

• (L*)* = L*
– i.e., taking the closure of a regular expression under

closure does not change the language

• φ* = εφ
• ε* = ε
• L+ = LL* = L*L
• L* = L+ + ε
• L? = ε + L

19

Checking a Law

Suppose we are told that the law
(R + S)* = (R*S*)*

holds for regular expressions. How would we check
that this claim is true?that this claim is true?

20

Checking a Law

1. Convert the RE’s to DFA’s and minimize the
DFA’s to see if they are equivalent

2. We can use the concretization test:
- Think of R and S as if they were single symbols, Think of R and S as if they were single symbols,

rather than placeholders for languages, i.e, R = {0}
and S = {1}

- Test whether the law holds under the concrete
symbols. If so, then the law is true, and if not, the law
is false

21

Concretization Test

For the example
(R + S)* = (R*S*)*
We can substitute 0 for R and 1 for S. The left
side is clearly any sequence of 0’s and 1’s The side is clearly any sequence of 0 s and 1 s. The
right side also denotes any string of 0’s and 1’s,
since 0 and 1 are each in L(0*1*)

22

Concretization Test

23

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages=

Costas Busch - RPI 24

5

Theorem - Part 1

Languages
Generated by
Regular Expressions

Regular
Languages

⊆

Costas Busch - RPI 25

r
)(rL

1. For any regular expression
the language is regular

Theorem - Part 2

Languages
Generated by
Regular Expressions

Regular
Languages

⊇

2. For any regular language there is

a regular expression with

Costas Busch - RPI 26

L
r LrL =)(

Induction Basis
Primitive Regular Expressions: αλ,,∅

NFAs

)()(1 ∅=∅= LML

Costas Busch - RPI 27

)(}{)(2 λλ LML ==

)(}{)(3 aLaML ==

regular
languages

a

Inductive Hypothesis

Assume for regular expressions and
that and are regular languages

1r 2r
)(1rL)(2rL

Costas Busch - RPI 28

1. For any regular expression

the language is regular

Proof - Part 1

r
)(rL

Costas Busch - RPI 29

Proof by induction on the size of r

Inductive Step
We will prove:

()

()21

21

rrL

rrL

⋅

+

Costas Busch - RPI 30

()

()

()()1

1

21

*

rL

rL

Are regular
Languages

6

By definition of regular expressions:

() () ()
() () ()

2121

rLrLrrL
rLrLrrL

=⋅
∪=+

Costas Busch - RPI 31

() () ()
() ()()
()() ()11

11

2121

**
rLrL
rLrL

rLrLrrL

=
=

=⋅

)(1rL)(2rL
By inductive hypothesis we know:

and are regular languages

Regular languages are closed under:

We also know:

Costas Busch - RPI 32

Regular languages are closed under:

() ()
() ()
()()*1

21

21

rL
rLrL

rLrL ∪Union

Concatenation

Star

Therefore:

() () ()2121 rLrLrrL ∪=+

Costas Busch - RPI 33

() () ()

() ()()** 11

2121

rLrL

rLrLrrL

=

=⋅ Are regular
languages

And trivially:

))((1rL is a regular language

Costas Busch - RPI 34

2. For any regular language there is

a regular expression with

Proof – Part 2

L
r LrL =)(

Costas Busch - RPI 35

Proof by construction of regular expression

Since is regular take the NFA that accepts it
L M

LML =)(

Costas Busch - RPI 36

LML =)(

Single final state

7

From construct the equivalent
Generalized Transition Graph
in which transition labels are regular expressions

M

Costas Busch - RPI 37

Example:

a

ba,

c
M

a

ba +

c

Equivalence of RE and Finite Automata

Finite Automata and Regular Expressions are
equivalent.

1. There is an algorithm for converting any RE into an
NFA.

2 There is an algorithm for converting any NFA to a 2. There is an algorithm for converting any NFA to a
DFA.

3. There is an algorithm for converting any DFA to a
RE.

These facts tell us that REs, NFAs and DFAs have equivalent
expressive power. All three describe the class of regular
languages.

Converting Regular Expressions
to NFAs

39

RE to ε-NFAs

We can convert a Regular Expression to a finite
automaton.

We can do this easiest by converting a RE to We can do this easiest by converting a RE to
epsilon-NFA

40

The regular expressions over finite Σ are the strings over
the alphabet Σ such that:
• { } (empty set) is a regular expression for the empty set

Converting RE to ε-NFAs

• Empty string ε is a regular expression denoting { ε }

• a is a regular expression denoting {a } for any a in Σ

ε

a

RE to ε-NFAs

42

8

RE to ε-NFAs
Example 1:
Convert ab+a and (ab+a)* into an NFA

43

RE to ε-NFAs
Example 2:
Convert (ab* | a*b)* into an NFA

ab* 1 432 a*b
a b

b a

44

b a

1 2a

43

5 6
ab* | a*b

ε

ε ε

ε

a

b

b

RE to ε-NFAs
Example 2:
Convert (ab* | a*b)* into an NFA

1 2a

5 6
ab* | a*b

ε

ε ε
b

45

1 2a

43

5 6

(ab* | a*b)*

7 8

ε ε

e e
ε

ε ε

ε

b

b

a

43
ε ε

a

b

Converting DFAs to Regular
Expressions

46

p

Converting DFAs to REs

There are two FA to RE Construction Algorithms
– State Elimination
– Direct Substitution Method

Converting DFAs to REs

State Elimination Method:
1. Starting with intermediate states and then moving

to accepting states, apply the state elimination
process to produce an equivalent automatonp p q
with regular expression labels on the edges.

• The result will be one or two state automaton with a
Start state and an Accept state.

9

DFA to RE: State Elimination

State Elimination Method:
2. If the two sates are different, we get an
automaton like the one shown below:

R U

The regular expression for this automaton is
(R+SU*T)*SU*

S1q 2q

T

DFA to RE: State Elimination

State Elimination Method:
3. If the Start state is also an accepting state, then

we must also perform a state elimination from
the original automaton that gets rid of everyg g y
state but the Start state. This leads us to:

We can describe this automaton as a regular
expression as R*

2q
R

DFA to RE: State Elimination

State Elimination Method:
4. If there are n Accept states, the repeat steps 1-3
for each Accept state to get n different regular
expressions R1, R2, …….Rn. For each repeat wep , , p
turn any other Accept state to non-Accept state.

The final regular expression for the automaton is
then the union of each of the n regular expressions

DFA to RE: Example 1

State Elimination:
Convert the following to a Regular Expression

0 1,0

52

11q 2q
0

3q1

DFA to RE: Example 1

State Elimination:
• Eliminate State q2

1

0

q q

1,0

1

• The regular expression is (0+10)*11(0+1)*
53

11q 2q
0

3q1

11

100 +

1q

1,0

0
3q

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

0 00

54

11q 2q
1

3q1

10

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

0

1

0

1q q

0

q1

• Eliminate q2

55

11q 2q
1

3q1

1*10

0

1q

1*100 +

3q

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

1*10

0

1q

1*100 +

q
• Turn off state q1

• The regular expression is 0*+0*10*1(0+10*1)*

56

1101q
3q

1*10

0

1q

1*100 +

3q

DFA to RE: Example 3

State Elimination:
ba,

a
b

b
0q 1q 2q

b

Costas Busch - RPI 57

ba +
a

b

b
0q 1q 2q

b

DFA to RE: Example 3

State Elimination:

ba +
a

b

0q 1q 2q

b

Costas Busch - RPI 58

b
0 1 2

0q 2q

babb*

)(* babb +

DFA to RE: Example 3

State Elimination:

0q 2q

babb*

)(* babb +

Costas Busch - RPI 59

0q 2q

*)(**)*(bbabbabbr +=

LMLrL ==)()(

State Elimination:

0q fq

1r

2r

3r
4r

DFA to RE: Example 4

Costas Busch - RPI 60

2r

)(* 213421 rrrrrrr +=
LMLrL ==)()(

The resulting regular expression:

11

Inductive Construction:
Let A be a FA with states 1,2,…,n. Let be a
regular expression whose language is the set of
labels of paths that go from state I to state j without

DFA to RE

(k)
ijR

61

p g j
passing through any state numbered above k.

Inductive Construction:
Basis:
k = 0; Path can not go through any states
Th th i ith th ll th (i l

DFA to RE

62

Thus, path is either an arc or the null path (a single
node).

– If i ≠ j, then is the sum of all symbols a such that A
has a transition from i to j on symbol a (φ if none)

– If i = j, then add ε to above.

(0)
ijR

Inductive Construction:
Induction:

– Assuming that correct expressions have been
developed for the ’s. Then for the ’s

DFA to RE

1)-(k
ijR (k)

ijR

63

p ij ij

1)-(k
kj

*1)-(k
kk

1)-(k
ik

1)-(k
ij

(k)
ij RRRRR +=

Inductive Construction:
Proof: A path from i to j that goes through no state
higher than k either:

1. Never goes through k, in which case the path’s label is
in the language of or

DFA to RE

1)-(k
ijR

64

2. Goes through k one or more times. In this case:
• contains the portion of the path that goes from i to k

for the first time
• contains the portion of the path (possibly empty)

from the first k visit to the last.
• contains the portion of the path from the last k visit to j.

1)-(k
ikR

*1)-(k
kk)(R

1)-(k
kjR

Inductive Construction:
Final Step: The RE for the entire FA is the sum
(union) of the RE’s , where i is the start state and
j is one of the accepting states

DFA to RE

n
ijR

65

j p g

Inductive Construction:
Consider the automaton given below

DFA to RE: Example

66

=(0)
11R ε

=(0)
12R 1

=(0)
12R ε + 0 +1

=(0)
31R 1

=+= (0)
12

*(0)
11

(0)
31

(0)
32

(1)
32 RRRRR φ+1ε*1=11

=+= (0)
12

*(0)
11

(0)
21

(0)
22

(1)
22 RRRRR ε +0 +1 + φε * 1

ε +0 +1

12

Converting ε-NFAs to DFAs

67

Converting ε-NFAs to DFAs

As we have seen earlier, each state in the new DFA will
correspond to some set of states from the NFA. The DFA
will be in state {s0,s1,…} after input if the NFA could be in
any of these states for the same input.

Converting ε-NFAs to DFAs

Epsilon Closure (ε-closure())
Epsilon Closure of a state is simply the set of all
states we can reach by following the transition
function from the given state that are labeled. g

Converting ε-NFAs to DFAs

ε-closure(T) = T + all NFA states reachable from
any state in T using only ε
Example: Convert the following ε -NFA into a DFA

1 2b
b

5

43
ε

a ε b

a

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

1 2b
b

5

43
ε

a ε b

a
ε -closure({1}) = {1}
ε -closure({4}) = {1,4}
ε -closure({3}) = {1,3,4}

Subset Construction:

1 2e
a,b

1,2

Converting ε-NFAs to DFAs: Example 1

NFA

DFA

72

5

43
b

a b

a,b a b

{1,2}

13

Subset Construction:

1 2ε
a,b

1,2 4,5b

a

Converting ε-NFAs to DFAs: Example 1

NFA
DFA

73

5

43
b

a b

a,b

3,5

a b

{1,2} {3,5} {4,5}

{3,5}

{4,5}

1 2e
a,b

1,2 4,5
b

a

b

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

NFA

DFA

74

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5}

{4}

1 2e
a,b

1,2 4,5 5a,bb

a

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

NFA

DFA

75

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4}

{5}

Subset Construction:

1 2ε
a,b

1,2 4,5 5
a,b

a,b

b

a

b

Converting ε-NFAs to DFAs: Example 1

NFA

DFA

76

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4} {5} {5}

{5} - -

All final states since the
NFA final state is included

Subset Construction:

Converting ε-NFAs to DFAs: Example 2

1 2b
b 1 1,3,4

a

NFA DFA

5

43
e

a b

a 2

1,4,5

b be

1,3,4,5

a
a

a

b

b b

1,4,5

