

Definition (continued)
For regular expressions
$$r_1$$
 and r_2
 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 $L(r_1 \cdot r_2) = L(r_1) L(r_2)$
 $L(r_1^*) = (L(r_1))^*$
 $L((r_1)) = L(r_1)$

• The identity for union is:

$$-L + \phi = \phi + L = L$$

- The identity for concatenation is:
 L ε = ε + L
- The annihilator for concatenation is:

 $-\phi L = L\phi = L$

• (L*)* = L*

 i.e., taking the closure of a regular expression under closure does not change the language

- φ* = ε
- ε* = ε
- L⁺ = LL* = L*L
- $L^* = L^+ + \varepsilon$
- L? = ε + L

Checking a Law

Suppose we are told that the law (R + S)* = (R*S*)* holds for regular expressions. How would we check that this claim is true?

Checking a Law

- 1. Convert the RE's to DFA's and minimize the DFA's to see if they are equivalent
- 2. We can use the concretization test:
 - Think of R and S as if they were single symbols, rather than placeholders for languages, i.e, R = {0} and S = {1}
 - Test whether the law holds under the concrete symbols. If so, then the law is true, and if not, the law is false

Concretization Test

For the example

 $(R + S)^* = (R^*S^*)^*$

We can substitute 0 for R and I for S. The left side is clearly any sequence of 0's and 1's. The right side also denotes any string of 0's and 1's, since 0 and 1 are each in L(0*1*)

Concretization Test

- NOTE: extensions of the test beyond regular expressions may fail.
- Consider the "law" $L \cap M \cap N = L \cap M$.
- · This is clearly false
 - Let L=M={a} and N=Ø. {a} $\neq Ø$.
 - But if L={a} and M = {b} and N={c} then
 - $L \cap M$ does equal $L \cap M \cap N$ which is empty.
 - The test would say this law is true, but it is not because we are applying the test beyond regular expressions.
- We'll see soon various languages that do not have corresponding regular expressions.

Proof - Part I

1. For any regular expression rthe language L(r) is regular

Proof by induction on the size of r

Costas Busch - RPI

By definition of regular expressions: $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ $L(r_1 \cdot r_2) = L(r_1) L(r_2)$ $L(r_1^*) = (L(r_1))^*$ $L((r_1)) = L(r_1)$ By inductive hypothesis we know: $L(r_1)$ and $L(r_2)$ are regular languages We also know: Regular languages are closed under: Union $L(r_1) \cup L(r_2)$ Concatenation $L(r_1) L(r_2)$ Star $(L(r_1))^*$

Costas Busch - RPI

Proof – Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

Costas Busch - RPI

Equivalence of RE and Finite Automata

Finite Automata and Regular Expressions are equivalent.

- I. There is an algorithm for converting any RE into an NFA.
- 2. There is an algorithm for converting any NFA to a DFA.
- 3. There is an algorithm for converting any DFA to a RE.

These facts tell us that REs, NFAs and DFAs have equivalent expressive power. All three describe the class of regular languages.

Converting Regular Expressions to NFAs

We can convert a Regular Expression to a finite automaton.

We can do this easiest by converting a RE to epsilon-NFA

- the alphabet Σ such that: • { } (empty set) is a regular expression for the empty set
- Empty string ϵ is a regular expression denoting { ϵ }
- a is a regular expression denoting $\{a\}$ for any a in Σ

→<u>a</u>→

Converting DFAs to REs

There are two FA to RE Construction Algorithms

- State Elimination
- Direct Substitution Method

Converting DFAs to REs

State Elimination Method:

- Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
 - The result will be one or two state automaton with a <u>Start</u> state and an <u>Accept</u> state.

DFA to RE: State Elimination

State Elimination Method:

State Elimination Method:

2. If the two sates are different, we get an automaton like the one shown below:

The regular expression T for this automaton is (R+SU*T)*SU*

DFA to RE: State Elimination

4. If there are n Accept states, the repeat steps 1-3

for each Accept state to get n different regular expressions R1, R2,Rn. For each repeat we turn any other **Accept** state to **non-Accept** state.

The final regular expression for the automaton is then the union of each of the n regular expressions

DFA to RE

Inductive Construction:

Let A be a FA with states 1,2,...,n. Let $R_{ij}^{(k)}$ be a regular expression whose language is the set of labels of paths that go from state I to state j without passing through any state numbered above k.

DFA to RE

Inductive Construction:

Basis:

k = 0; Path can not go through any states

Thus, path is either an arc or the null path (a single node).

- If i \neq j, then $R_{ij}^{(0)}$ is the sum of all symbols a such that A has a transition from i to j on symbol a (ϕ if none)

– If i = j, then add ε to above.

DFA to RE

Inductive Construction:

Proof: A path from i to j that goes through no state higher than k either:

- I. Never goes through k, in which case the path's label is in the language of $R_{ij}^{(k\text{-}1)}\,\text{or}$
- 2. Goes through k one or more times. In this case:
 - $R_{ik}^{(k-1)}$ contains the portion of the path that goes from i to k for the first time
 - $(R_{kk}^{(k-1)})^*$ contains the portion of the path (possibly empty) from the first k visit to the last.
 - + $R_{ki}^{\left(k\text{-}1\right)}$ contains the portion of the path from the last k visit to j.

DFA to RE

Inductive Construction:

Final Step: The RE for the entire FA is the sum (union) of the RE's R_{ij}^{n} , where i is the start state and j is one of the accepting states

Converting $\epsilon\text{-NFAs}$ to DFAs

Converting ϵ -NFAs to DFAs

As we have seen earlier, each state in the new DFA will correspond to some set of states from the NFA. The DFA will be in state $\{s_0, s_1, \ldots\}$ after input if the NFA could be in *any* of these states for the same input.

Converting ϵ -NFAs to DFAs

Epsilon Closure (ε-closure())

Epsilon Closure of a state is simply the set of all states we can reach by following the transition function from the given state that are labeled.

Converting ϵ -NFAs to DFAs

 ϵ -closure(T) = T + all NFA states reachable from any state in T using only ϵ Example: Convert the following ϵ -NFA into a DFA

