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Regular Expressions

Regular expressions describe regular languages  

Example:
*)( cba +
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describes the language

*)( cba ⋅+

{ } { },...,,,,,*, bcaabcaabcabca λ=

Regular Expressions
The regular expressions over finite Σ are the strings 
over the alphabet Σ such that:

1. { } (empty set) is a regular expression for the 
empty set

{ }2. ε is a regular expression denoting { ε } 
3. a is a regular expression denoting set { a } for 

any a in Σ

Recursive Definition

αλ,,∅Primitive regular expressions:

2r1rGiven regular expressions and
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are regular expressions

Examples

( ) )(* ∅+⋅⋅+ ccbaA regular expression:
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( )++ baNot a regular expression:

Languages of Regular Expressions

:   language of regular expression

E l

( )rL r
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Example:

( ) { },...,,,,,*)( bcaabcaabcacbaL λ=⋅+
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Definition

For primitive regular expressions:

( )L ∅=∅
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( ) { }
( ) { }aaL

L
=
= λλ

For regular expressions       and

Definition (continued)

1r 2r

( ) ( ) ( )2121 rLrLrrL ∪=+
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( ) ( ) ( )2121 rLrLrrL =⋅

( ) ( )( )** 11 rLrL =

( )( ) ( )11 rLrL =

Example

Regular expression:  ( ) *aba ⋅+

( )( )*abaL ⋅+ ( )( ) ( )*aLbaL +=
( ) ( )*aLbaL +=
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( ) ( )aLbaL +
( ) ( )( ) ( )( )*aLbLaL ∪=

{ } { }( ) { }( )*aba ∪=
{ }{ },...,,,, aaaaaaba λ=

{ },...,,,...,,, baababaaaaaa=

Example

Regular expression ( ) ( )bbabar ++= *
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( ) { },...,,,,, bbbbaabbaabbarL =

Example

Regular expression ( ) ( ) bbbaar **=
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( ) }0,:{ 22 ≥= mnbbarL mn

Example

Regular expression *)10(00*)10( ++=r
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)(rL = { all strings with at least
two consecutive 0 } 
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Example

Regular expression )0(*)011( λ++=r
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)(rL = { all strings without
two consecutive 0 } 

Equivalent Regular Expressions

Definition:

Regular expressions       and1r 2r
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are equivalent if  )()( 21 rLrL =

Example

L = { all strings without  two consecutive 0 } 

)0(*)011(1 λ++=r
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)0(*1)0(**)011*1(2 λλ +++=r

LrLrL == )()( 21
1r 2rand

are equivalent
regular expr.

Algebraic Laws for REs
Just like we have an algebra for arithmetic, we also
have an algebra for regular expressions.
• Commutative Law for Union

– L + M = M + L

• Associative Law for UnionAssociative Law for Union
– (L + M) + N = L + (M + N)

• Associative Law for Concatenation
– (LM)N = L (MN)

• There is no commutative law for concatenation 
– LM ≠ ML

16

Algebraic Laws for REs

• The identity for union is:
– L + φ = φ + L = L

• The identity for concatenation is:
– L ε = ε + LL ε  ε + L

• The annihilator for concatenation is:
– φ L = Lφ = L

17

Algebraic Laws for REs

• Left Distributive law: 
– L(M + N) = LM + LN

• Right Distributive law:
– (M +  N)L = LM + LN(M +  N)L  LM + LN

• Idempotent law:
– L + L = L

18
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Laws involving Closures

• (L*)* = L*
– i.e., taking the closure of a regular expression under 

closure does not change the language

• φ* = εφ
• ε* = ε
• L+ = LL* = L*L
• L* = L+ + ε
• L? = ε + L

19

Checking a Law

Suppose we are told that the law
(R + S)* = (R*S*)*

holds for regular expressions. How would we check 
that this claim is true?that this claim is true?

20

Checking a Law

1. Convert the RE’s to DFA’s and minimize the 
DFA’s to see if they are equivalent

2. We can use the concretization test:
- Think of R and S as if they were single symbols, Think of R and S as if they were single symbols, 

rather than placeholders for languages, i.e, R = {0} 
and S = {1}

- Test whether the law holds under the concrete 
symbols. If so, then the law is true, and if not, the law 
is false

21

Concretization Test

For the example
(R + S)* = (R*S*)*
We can substitute 0 for R and 1 for S. The left 
side is clearly any sequence of 0’s and 1’s  The side is clearly any sequence of 0 s and 1 s. The 
right side also denotes any string of 0’s and 1’s, 
since 0 and 1 are each in L(0*1*)

22

Concretization Test

23

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages=
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Theorem - Part 1

Languages
Generated by
Regular Expressions

Regular
Languages

⊆
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r
)( rL

1.  For any regular expression
the language            is regular

Theorem - Part 2

Languages
Generated by
Regular Expressions

Regular
Languages

⊇

2. For any regular language       there is

a regular expression      with
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L
r LrL =)(

Induction Basis
Primitive Regular Expressions: αλ,,∅

NFAs

)()( 1 ∅=∅= LML
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)(}{)( 2 λλ LML ==

)(}{)( 3 aLaML ==

regular
languages

a

Inductive Hypothesis

Assume for regular expressions       and
that             and            are regular languages

1r 2r
)( 1rL )( 2rL
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1. For any regular expression

the language           is regular

Proof - Part 1

r
)(rL
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Proof by induction on the size of r

Inductive Step
We will prove:

( )

( )21

21

rrL

rrL

⋅

+
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( )

( )

( )( )1

1

21

*

rL

rL

Are regular 
Languages
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By definition of regular expressions:

( ) ( ) ( )
( ) ( ) ( )

2121

rLrLrrL
rLrLrrL

=⋅
∪=+
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( ) ( ) ( )
( ) ( )( )
( )( ) ( )11

11

2121

**
rLrL
rLrL

rLrLrrL

=
=

=⋅

)( 1rL )( 2rL
By inductive hypothesis we know:

and are regular languages

Regular languages are closed under:

We also know:
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Regular languages are closed under:

( ) ( )
( ) ( )
( )( )*1

21

21

rL
rLrL

rLrL ∪Union 

Concatenation 

Star 

Therefore: 

( ) ( ) ( )2121 rLrLrrL ∪=+
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( ) ( ) ( )

( ) ( )( )** 11

2121

rLrL

rLrLrrL

=

=⋅ Are regular
languages

And trivially: 

))(( 1rL is a regular language
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2. For any regular language       there is

a regular expression       with

Proof – Part 2

L
r LrL =)(
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Proof by construction of regular expression

Since      is regular take the NFA       that accepts it
L M

LML =)(
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LML =)(

Single final state
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From       construct the equivalent
Generalized Transition Graph
in which transition labels are regular expressions

M
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Example:

a

ba,

c
M

a

ba +

c

Equivalence of RE and Finite Automata

Finite Automata and Regular Expressions are 
equivalent. 

1. There is an algorithm for converting any RE into an 
NFA.

2 There is an algorithm for converting any NFA to a 2. There is an algorithm for converting any NFA to a 
DFA.

3. There is an algorithm for converting any DFA to a 
RE.

These facts tell us that REs, NFAs and DFAs have equivalent
expressive power. All three describe the class of regular
languages.

Converting Regular Expressions 
to NFAs

39

RE to ε-NFAs

We can convert a Regular Expression to a finite 
automaton.

We can do this easiest by converting a RE to We can do this easiest by converting a RE to 
epsilon-NFA

40

The regular expressions over finite Σ are the strings over 
the alphabet Σ such that:
• { } (empty set) is a regular expression for the empty set

Converting RE to ε-NFAs

• Empty string ε is a regular expression denoting { ε } 

• a is a regular expression denoting {a } for any a in Σ

ε

a

RE to ε-NFAs

42
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RE to ε-NFAs
Example 1: 
Convert ab+a and (ab+a)* into an NFA

43

RE to ε-NFAs
Example 2:
Convert  (ab* | a*b)* into an NFA

ab* 1 432 a*b
a b

b a

44

b a

1 2a

43

5 6
ab* | a*b

ε

ε ε

ε

a

b

b

RE to ε-NFAs
Example 2:
Convert  (ab* | a*b)* into an NFA

1 2a

5 6
ab* | a*b

ε

ε ε
b

45

1 2a

43

5 6

(ab* | a*b)*

7 8

ε ε

e e
ε

ε ε

ε

b

b

a

43
ε ε

a

b

Converting DFAs to Regular 
Expressions

46

p

Converting DFAs to REs

There are two FA to RE Construction Algorithms
– State Elimination
– Direct Substitution Method

Converting DFAs to REs

State Elimination Method:
1. Starting with intermediate states and then moving

to accepting states, apply the state elimination
process to produce an equivalent automatonp p q
with regular expression labels on the edges.

• The result will be one or two state automaton with a
Start state and an Accept state.



9

DFA to RE: State Elimination

State Elimination Method:
2. If the two sates are different, we get an
automaton like the one shown below:

R U

The regular expression for this automaton is
(R+SU*T)*SU*

S1q 2q

T

DFA to RE: State Elimination

State Elimination Method:
3. If the Start state is also an accepting state, then

we must also perform a state elimination from
the original automaton that gets rid of everyg g y
state but the Start state. This leads us to:

We can describe this automaton as a regular
expression as R*

2q
R

DFA to RE: State Elimination

State Elimination Method:
4. If there are n Accept states, the repeat steps 1-3
for each Accept state to get n different regular
expressions R1, R2, …….Rn. For each repeat wep , , p
turn any other Accept state to non-Accept state.

The final regular expression for the automaton is
then the union of each of the n regular expressions

DFA to RE: Example 1

State Elimination:
Convert the following to a Regular Expression

0 1,0

52

11q 2q
0

3q1

DFA to RE: Example 1

State Elimination:
• Eliminate State q2

1

0

q q

1,0

1

• The regular expression is (0+10)*11(0+1)*
53

11q 2q
0

3q1

11

100 +

1q

1,0

0
3q

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

0 00

54

11q 2q
1

3q1



10

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

0

1

0

1q q

0

q1

• Eliminate q2

55

11q 2q
1

3q1

1*10

0

1q

1*100 +

3q

DFA to RE: Example 2

State Elimination:
• Automaton that accepts even number of 1’s

1*10

0

1q

1*100 +

q
• Turn off state q1

• The regular expression is 0*+0*10*1(0+10*1)*

56

1101q
3q

1*10

0

1q

1*100 +

3q

DFA to RE: Example 3

State Elimination:
ba,

a
b

b
0q 1q 2q

b
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ba +
a

b

b
0q 1q 2q

b

DFA to RE: Example 3

State Elimination:

ba +
a

b

0q 1q 2q

b
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b
0 1 2

0q 2q

babb*

)(* babb +

DFA to RE: Example 3

State Elimination:

0q 2q

babb*

)(* babb +
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0q 2q

*)(**)*( bbabbabbr +=

LMLrL == )()(

State Elimination:

0q fq

1r

2r

3r
4r

DFA to RE: Example 4
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2r

*)*(* 213421 rrrrrrr +=
LMLrL == )()(

The resulting regular expression:
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Inductive Construction:
Let A be a FA with states 1,2,…,n. Let        be a 
regular expression whose language is the set of 
labels of paths that go from state I to state j without 

DFA to RE

(k)
ijR

61

p g j
passing through any state numbered above k.

Inductive Construction:
Basis: 
k = 0; Path can not go through any states
Th  th i  ith     th  ll th (  i l  

DFA to RE

62

Thus, path is either an arc or the null path (a single 
node).

– If i ≠ j, then       is the sum of all symbols a such that A 
has a transition from i to j on symbol a (φ if none)

– If i = j, then add ε to above.

(0)
ijR

Inductive Construction:
Induction:

– Assuming that correct expressions have been 
developed for the        ’s. Then for the       ’s

DFA to RE

1)-(k
ijR (k)

ijR

63

p ij ij

1)-(k
kj

*1)-(k
kk

1)-(k
ik

1)-(k
ij

(k)
ij RRRRR +=

Inductive Construction:
Proof: A path from i to j that goes through no state 
higher than k either:

1. Never goes through k, in which case the path’s label is 
in the language of         or

DFA to RE

1)-(k
ijR

64

2. Goes through k one or more times. In this case:
• contains the portion of the path that goes from i to k 

for the first time
• contains the portion of the path (possibly empty) 

from the first k visit to the last.
• contains the portion of the path from the last k visit to j.

1)-(k
ikR

*1)-(k
kk )(R

1)-(k
kjR

Inductive Construction:
Final Step: The RE for the entire FA is the sum 
(union) of the RE’s       , where i is the start state and 
j is one of the accepting states

DFA to RE

n
ijR

65

j p g

Inductive Construction:
Consider the automaton given below

DFA to RE: Example

66

=(0)
11R ε

=(0)
12R 1

=(0)
12R ε + 0 +1

=(0)
31R 1

=+= (0)
12

*(0)
11

(0)
31

(0)
32

(1)
32 RRRRR φ+1ε*1=11

=+= (0)
12

*(0)
11

(0)
21

(0)
22

(1)
22 RRRRR ε +0 +1 + φε * 1

ε +0 +1
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Converting ε-NFAs to DFAs

67

Converting ε-NFAs to DFAs

As we have seen earlier, each state in the new DFA will 
correspond to some set of states from the NFA.  The DFA 
will be in state {s0,s1,…} after input if the NFA could be in 
any of these states for the same input.

Converting ε-NFAs to DFAs

Epsilon Closure (ε-closure())
Epsilon Closure of a state is simply the set of all 
states we can reach by following the  transition 
function from the given state that are labeled. g

Converting ε-NFAs to DFAs

ε-closure(T) = T + all NFA states reachable from 
any state in T using only ε
Example: Convert the following ε -NFA into a DFA

1 2b
b

5

43
ε

a ε b

a

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

1 2b
b

5

43
ε

a ε b

a
ε -closure({1}) = {1}
ε -closure({4}) = {1,4}
ε -closure({3}) = {1,3,4}

Subset Construction:

1 2e
a,b

1,2

Converting ε-NFAs to DFAs: Example 1

NFA

DFA

72

5

43
b

a b

a,b a b

{1,2}
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Subset Construction:

1 2ε
a,b

1,2 4,5b

a

Converting ε-NFAs to DFAs: Example 1

NFA
DFA

73

5

43
b

a b

a,b

3,5

a b

{1,2} {3,5} {4,5}

{3,5}

{4,5}

1 2e
a,b

1,2 4,5
b

a

b

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

NFA

DFA

74

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5}

{4}

1 2e
a,b

1,2 4,5 5a,bb

a

Converting ε-NFAs to DFAs: Example 1

Subset Construction:

NFA

DFA

75

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4}

{5}

Subset Construction:

1 2ε
a,b

1,2 4,5 5
a,b

a,b

b

a

b

Converting ε-NFAs to DFAs: Example 1

NFA

DFA

76

5

43
b

a b

a,b

3,5 4b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4} {5} {5}

{5} - -

All final states since the
NFA final state is included

Subset Construction:

Converting ε-NFAs to DFAs: Example 2

1 2b
b 1 1,3,4

a

NFA DFA

5

43
e

a b

a 2

1,4,5

b be

1,3,4,5

a
a

a

b

b b

1,4,5


