Department of Computer \& Information Sciences Pakistan Institute of Engineering and Applied Sciences	
Regular Expressions	
Umar Faiz http://www.pieas.edu.pk/umarfaiz/cis3I7	

Regular Expressions

The regular expressions over finite Σ are the strings over the alphabet Σ such that:
I. \{ \} (empty set) is a regular expression for the empty set
2. ε is a regular expression denoting $\{\varepsilon\}$
3. a is a regular expression denoting set $\{a\}$ for any a in Σ

Regular Expressions

Regular expressions describe regular languages

Example:

$$
(a+b \cdot c)^{*}
$$

describes the language

$$
\{a, b c\}^{*}=\{\lambda, a, b c, a a, a b c, b c a, \ldots\}
$$

$\left.\begin{array}{|c}\text { Recursive Definition } \\ \text { Primitive regular expressions: } \quad \varnothing, \lambda, \quad \alpha \\ \text { Given regular expressions } r_{1} \text { and } r_{2} \\ \\ r_{1}+r_{2} \\ r_{1} \cdot r_{2} \\ r_{1} * \\ \left(r_{1}\right)\end{array}\right\}$ are regular expressions \quad.

Languages of Regular Expressions

$L(r)$: language of regular expression r

Example:
$L\left((a+b \cdot c)^{*}\right)=\{\lambda, a, b c, a a, a b c, b c a, \ldots\}$

Definition
For primitive regular expressions:
$L(\varnothing)=\varnothing$
$L(\lambda)=\{\lambda\}$
$L(a)=\{a\}$

	Example
Regular expression:	$(a+b) \cdot a^{*}$
$L\left((a+b) \cdot a^{*}\right)=$	$L((a+b)) L\left(a^{*}\right)$
$=$	$L(a+b) L\left(a^{*}\right)$
$=$	$(L(a) \cup L(b))(L(a))^{*}$
$=$	$(\{a\} \cup\{b\})(\{a\})^{*}$
$=$	$\{a, b\}\{\lambda, a, a a, a a a, \ldots\}$
$=$	$\{a, a a, a a a, \ldots, b, b a, b a a, \ldots\}\}$
	Cosassbush- prl

Example
Regular expression $\quad r=(a a) *(b b) * b$
$L(r)=\left\{a^{2 n} b^{2 m} b: \quad n, m \geq 0\right\}$

Definition (continued)

For regular expressions r_{1} and r_{2}

$$
\begin{aligned}
L\left(r_{1}+r_{2}\right) & =L\left(r_{1}\right) \cup L\left(r_{2}\right) \\
L\left(r_{1} \cdot r_{2}\right) & =L\left(r_{1}\right) L\left(r_{2}\right) \\
L\left(r_{1} *\right) & =\left(L\left(r_{1}\right)\right) * \\
L\left(\left(r_{1}\right)\right) & =L\left(r_{1}\right)
\end{aligned}
$$

Example	
Regular expression $\quad r=(a+b) *(a+b b)$	
$L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\}$	

Example
Regular expression $\quad r=(0+1) * 00(0+1)^{*}$
$L(r)=\left\{\begin{array}{c}\text { all strings with at least } \\ \text { two consecutive } 0\}\end{array}\right.$

Example	
Regular expression	$r=(1+01) *(0+\lambda)$
$L(r)=\{$ all strings without	
two consecutive 0 \}	
	Cosas Bust-Ral

Equivalent Regular Expressions

Definition:

Regular expressions r_{1} and r_{2}
are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$

Algebraic Laws for REs

Just like we have an algebra for arithmetic, we also have an algebra for regular expressions.

- Commutative Law for Union
$-L+M=M+L$
- Associative Law for Union
$-(L+M)+N=L+(M+N)$
- Associative Law for Concatenation
- (LM)N = L (MN)
- There is no commutative law for concatenation - LM \neq ML

Algebraic Laws for REs

- The identity for union is:
$-\mathrm{L}+\phi=\phi+\mathrm{L}=\mathrm{L}$
- The identity for concatenation is:
$-\mathrm{L} \varepsilon=\varepsilon+\mathrm{L}$
- The annihilator for concatenation is: $-\phi \mathrm{L}=\mathrm{L} \phi=\mathrm{L}$

Laws involving Closures

- ($\left.\mathrm{L}^{*}\right)^{*}=\mathrm{L}^{*}$
- i.e., taking the closure of a regular expression under closure does not change the language
- $\phi^{*}=\varepsilon$
- $\varepsilon^{*}=\varepsilon$
- $\mathrm{L}^{+}=\mathrm{LL} *=\mathrm{L} * \mathrm{~L}$
- $\mathrm{L}^{*}=\mathrm{L}^{+}+\varepsilon$
- L ? $=\varepsilon+\mathrm{L}$

Checking a Law

Suppose we are told that the law

$$
(R+S)^{*}=\left(R^{*} S^{*}\right)^{*}
$$

holds for regular expressions. How would we check that this claim is true?

Checking a Law

I. Convert the RE's to DFA's and minimize the DFA's to see if they are equivalent
2. We can use the concretization test:

- Think of R and S as if they were single symbols, rather than placeholders for languages, i.e, $R=\{0\}$ and $S=\{1\}$
- Test whether the law holds under the concrete symbols. If so, then the law is true, and if not, the law is false

Concretization Test

For the example
$(\mathrm{R}+\mathrm{S})^{*}=\left(\mathrm{R}^{*} \mathrm{~S}^{*}\right)^{*}$
We can substitute 0 for R and I for S. The left side is clearly any sequence of 0 's and I's. The right side also denotes any string of 0 's and I's, since 0 and I are each in $L\left(0^{*} I^{*}\right)$

Concretization Test

- NOTE: extensions of the test beyond regular expressions may fail.
- Consider the "law" $\mathrm{L} \cap \mathrm{M} \cap \mathrm{N}=\mathrm{L} \cap \mathrm{M}$.
- This is clearly false
- Let $\mathrm{L}=\mathrm{M}=\{\mathrm{a}\}$ and $\mathrm{N}=\varnothing . \quad\{\mathrm{a}\} \neq \varnothing$.
- But if $\mathrm{L}=\{\mathrm{a}\}$ and $\mathrm{M}=\{\mathrm{b}\}$ and $\mathrm{N}=\{\mathrm{c}\}$ then
- $\mathrm{L} \cap \mathrm{M}$ does equal $\mathrm{L} \cap \mathrm{M} \cap \mathrm{N}$ which is empty.
- The test would say this law is true, but it is not because we are applying the test beyond regular expressions.
- We'll see soon various languages that do not have corresponding regular expressions.

Inductive Hypothesis

Assume for regular expressions r_{1} and r_{2} that $L\left(r_{1}\right)$ and $L\left(r_{2}\right)$ are regular languages

Proof - Part I

1. For any regular expression r the language $L(r)$ is regular

Proof by induction on the size of r

$$
\begin{aligned}
& L\left(r_{1} *\right)=\left(L\left(r_{1}\right)\right) * \\
& L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)
\end{aligned}
$$

By inductive hypothesis we know:
$L\left(r_{1}\right)$ and $L\left(r_{2}\right)$ are regular languages
We also know:
Regular languages are closed under:
\(\left.\begin{array}{l}Therefore:

L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)

L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)

L\left(r_{1}{ }^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}\end{array}\right\}\)| Are regular |
| :--- |
| languages |

And trivially:

$$
L\left(\left(r_{1}\right)\right) \text { is a regular language }
$$

Proof - Part 2

2. For any regular language L there is a regular expression r with $L(r)=L$

Proof by construction of regular expression

Single final state

RE to ε-NFAs

We can convert a Regular Expression to a finite automaton.

We can do this easiest by converting a RE to epsilon-NFA

Equivalence of RE and Finite Automata

Finite Automata and Regular Expressions are equivalent.
I. There is an algorithm for converting any RE into an NFA.
2. There is an algorithm for converting any NFA to a DFA.
3. There is an algorithm for converting any DFA to a RE.
These facts tell us that REs, NFAs and DFAs have equivalent expressive power. All three describe the class of regular languages.

Converting Regular Expressions to NFAs

Converting RE to ε-NFAs

The regular expressions over finite Σ are the strings over the alphabet Σ such that:

- \{ \} (empty set) is a regular expression for the empty set
\square
- Empty string ε is a regular expression denoting $\{\varepsilon\}$

- a is a regular expression denoting $\{a\}$ for any a in Σ

RE to ε-NFAs

Example 2:
Convert ($\left.\mathrm{ab}^{*} \mid \mathrm{a}^{*} \mathrm{~b}\right)^{*}$ into an NFA

Converting DFAs to Regular Expressions

Converting DFAs to REs
There are two FA to RE Construction Algorithms
- State Elimination
- Direct Substitution Method

Converting DFAs to REs

State Elimination Method:
I. Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.

- The result will be one or two state automaton with a Start state and an Accept state.

DFA to RE: State Elimination

State Elimination Method:
4. If there are n Accept states, the repeat steps I-3 for each Accept state to get n different regular expressions RI, R2,Rn. For each repeat we turn any other Accept state to non-Accept state.

The final regular expression for the automaton is then the union of each of the n regular expressions

DFA to RE: Example I

State Elimination:

- Eliminate State q2

- The regular expression is $(0+10)^{*} 11(0+1)^{*}$

DFA to RE: State Elimination

State Elimination Method:

3. If the Start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the Start state. This leads us to:

We can describe this automaton as a regular expression as \mathbf{R}^{*}

DFA to RE: Example I

State Elimination:
Convert the following to a Regular Expression

DFA to RE: Example 2

State Elimination:

- Automaton that accepts even number of I's

DFA to RE: Example 2

State Elimination:

- Automaton that accepts even number ${ }^{2}$ of I's

- Turn off state q_{1}

- The regular expression is $0^{*}+0^{*} 10^{*} 1\left(0+10^{*} 1\right)^{*}$

DFA to RE: Example 4

State Elimination:

The resulting regular expression:

$$
\begin{aligned}
& r=r_{1} * r_{2}\left(r_{4}+r_{3} r_{1} * r_{2}\right) * \\
& L(r)=L(M)=L
\end{aligned}
$$

DFA to RE

Inductive Construction:
Let A be a FA with states $1,2, \ldots, n$. Let $R_{i j}^{(k)}$ be a regular expression whose language is the set of labels of paths that go from state I to state j without passing through any state numbered above k.

DFA to RE

Inductive Construction:

Final Step: The RE for the entire FA is the sum (union) of the RE's $R_{i j}^{n}$, where i is the start state and j is one of the accepting states

DFA to RE

Inductive Construction:
Basis:
$\mathrm{k}=0$; Path can not go through any states
Thus, path is either an arc or the null path (a single node).

- If $\mathrm{i} \neq \mathrm{j}$, then $\mathrm{R}_{\mathrm{ij}}^{(0)}$ is the sum of all symbols a such that A has a transition from i to j on symbol a (ϕ if none)
- If $\mathrm{i}=\mathrm{j}$, then add ε to above.

DFA to RE

Inductive Construction:
Induction:

- Assuming that correct expressions have been developed for the $R_{i j}^{(k-1)}$'s. Then for the $R_{i j}^{(k)}$'s

$$
\mathrm{R}_{\mathrm{ij}}^{(\mathrm{k})}=\mathrm{R}_{\mathrm{ij}}^{(\mathrm{k}-1)}+\mathrm{R}_{\mathrm{ik}}^{(\mathrm{k}-1)} \mathrm{R}_{\mathrm{kk}}^{(\mathrm{k}-1)^{*}} \mathrm{R}_{\mathrm{kj}}^{(\mathrm{k}-1)}
$$

DFA to RE

Inductive Construction:

Proof: A path from i to j that goes through no state higher than k either:
I. Never goes through k, in which case the path's label is in the language of $R_{i j}^{(k-1)}$ or
2. Goes through k one or more times. In this case:

- $\mathrm{R}_{\mathrm{ik}}^{(\mathrm{k}-1)}$ contains the portion of the path that goes from i to k for the first time
- $\left(\mathrm{R}_{\mathrm{kk}}^{(\mathrm{k}-1)}\right)^{*}$ contains the portion of the path (possibly empty) from the first k visit to the last.
- $\mathrm{R}_{\mathrm{kj}}^{(\mathrm{k}-1)}$ contains the portion of the path from the last k visit to j .

DFA to RE
Inductive Construction:
Final Step: The RE for the entire FA is the sum
(union) of the RE's $R_{i j}^{\mathrm{n}}$, where i is the start state and
j is one of the accepting states

DFA to RE: Example

Inductive Construction:
Consider the automaton given below

$$
\begin{array}{ll}
\mathrm{R}_{11}^{(0)}=\varepsilon & 0 \\
\mathrm{R}_{12}^{(0)}=\mathrm{I} & \mathrm{R}_{32}^{(1)}=\mathrm{R}_{32}^{(0)}+\mathrm{R}_{31}^{(0)} \mathrm{R}_{11}^{(0)^{*}} \mathrm{R}_{12}^{(0)}=\phi+\mid \varepsilon^{*} \mathrm{I}=\mathrm{I} \\
\mathrm{R}_{12}^{(0)}=\varepsilon+0+\mathrm{I} & \mathrm{R}_{22}^{(1)}=\mathrm{R}_{22}^{(0)}+\mathrm{R}_{21}^{(0)} \mathrm{R}_{11}^{(0)^{*}} \mathrm{R}_{12}^{(0)}=\varepsilon+0+\mathrm{l}+\phi \varepsilon * \mathrm{I} \\
\mathrm{R}_{31}^{(0)}=\mathrm{I} & \\
\varepsilon+0+\mathrm{I}
\end{array}
$$

Converting ε-NFAs to DFAs

Epsilon Closure (8-closure())
Epsilon Closure of a state is simply the set of all states we can reach by following the transition function from the given state that are labeled.

Converting ε-NFAs to DFAs

As we have seen earlier, each state in the new DFA will correspond to some set of states from the NFA. The DFA will be in state $\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots\right\}$ after input if the NFA could be in any of these states for the same input.

Converting ε-NFAs to DFAs

ε-closure $(\mathrm{T})=\mathrm{T}+$ all NFA states reachable from any state in T using only ε
Example: Convert the following ε-NFA into a DFA

Converting ε-NFAs to DFAs: Example I

Subset Construction:

Converting ε-NFAs to DFAs: Example I

Subset Construction:

Converting ε-NFAs to DFAs: Example I

Subset Construction:

Converting ε-NFAs to DFAs: Example I

Subset Construction:

